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Abstract

In this study two catalyst library optimization methods, the Holographic Research Strategy (HRS) and the Genetic Algorithm (GA) were

compared based on their ability to find the optimum compositions in a given multi-dimensional experimental space. Results obtained in three

different case studies were used to investigate both the rate and the certainty of the optimum search. In these case studies the activity–composition

relationships were established using Artificial Neural Networks (ANNs) trained with catalytic data published earlier. The above relationships were

used in ‘‘virtual optimization experiments’’ using both HRS and GA for catalyst library optimization. Upon using the stochastic GA its exceedingly

divers mode of sampling often resulted in poor catalytic materials in the next catalyst generation. This fact resulted in a decreased rate of

convergence to the optimum. In contrast, in HRS, which is a deterministic optimization algorithm, a moderate level of diversity in the catalyst

library can easily be achieved. In this way an acceptable rate in optimum search can be accomplished. The visualization ability of HRS allows the

illustration of all virtually tested compositions in a two-dimensional form regardless the optimization algorithm used. Upon using HRS a structured

arrangement of experimental points in the virtual holograms was observed. However, when GA was applied for virtual optimization ‘‘starry sky’’-

like arrangement of compositions in the virtual holograms was obtained. Therefore based on virtual holograms, upon using HRS the relationship

between the composition of catalytic materials and their performance can be qualitatively revealed, while no similar correlation can be obtained

using GA.
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1. Introduction

The number of catalytic tests that could be made in parallel

way strongly depends on the type of reactions and the

experimental conditions used. In gas phase reactions several

hundreds catalysts can simultaneously be tested. However, in

high-pressure liquid phase catalytic reactions only 8–16

parallel experiments can be performed. In the former case

huge catalyst libraries can be designed, while in the latter one

the rational approach does not allow to test libraries containing

more than 250–300 catalysts. Consequently, the informatic

platform used to design catalyst libraries for high-pressure
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liquid phase reactions should have fast optimization and

information mining tools.

It has to be mentioned that in most of the cases in catalyst

library design the final goal is to develop multi-component

catalysts. The key parameters in the design of heterogeneous

catalyst libraries are: (i) the number of variable elements, (ii)

the maximum number of components in one composition, (iii)

the amount or ratios of components, and (iv) the total amount of

elements. This approach results in large experimental spaces,

which contain catalysts different from each other only in

composition.

In the field of combinatorial catalysis different approaches are

used for library design. Industrial companies, like Symix,

Avantium, hte GmbH, are using their own proprietary methods.

In academic research the Genetic Algorithm (GA) is widely

applied [1–3]. Recently the combination of GA with Artificial

mailto:joemarg@chemres.hu
http://dx.doi.org/10.1016/j.apcata.2006.01.028
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Neural Networks (ANNs) has been reported [4–8]. In these

works ANNs have been used for the establishment of

composition–activity relationships in different catalyst libraries.

Recently we described a new approach, the Holographic

Research Strategy (HRS) and its combination with ANNs [9–

11] for catalyst library optimization. It was shown previously

that HRS is a deterministic approach, i.e. the route of

optimization is unequivocally determined by the applied

setting parameters [9]. These settings are: (i) the total number

of components and their concentration levels, (ii) the number

and arrangement of experimental points of the initial catalyst

library in the experimental hologram, (iii) the number of the

best hits around which the new catalyst generation is created,

and (iv) the size and the form of the experimental regions used

to design the next catalyst generation [9,11]. Presumably all of

these parameters can affect in some extent the rate and the

certainty of optimum search. In this respect the importance of

the size of the experimental region has already been discussed

in our previous study [9]. A straightforward correlation was

found, i.e. the smaller is the experimental window the faster is

the rate of the optimization. However, there is a limit in

reducing the size of the experimental region. The smaller the

experimental region, the higher is the chance to miss the global

optimum. If the size of the experimental region is not properly

chosen HRS can get stuck in a local optimum.

Contrary to HRS, GA is a stochastic, multivariate approach.

In case of GA even in one given experimental space using two

different qualitative settings (such as, e.g. two different rates of

qualitative and/or quantitative mutations) numerous optimum

search can be performed [1–3]. In this study the rate and

certainty of convergence to the optimum of HRS will be

compared to that of the GA. In this work three case studies were

investigated. In these case studies the following approach was

used: previously published experimental data obtained in

different catalysts library design were analyzed by ANNs

creating a definite mathematical expression describing the

activity–composition relationship for the given reaction. The

obtained exact mathematical relationships between the

composition and the activity have been applied for ‘‘virtual

optimization’’ of catalyst libraries using both HRS and GA

optimization algorithms.

ANNs were trained with results obtained in the following

three catalytic reactions: (i) methane oxidation [10], (ii)

propane oxidation [2] and (iii) methane oxidative coupling [5].

Further details will be given in Section 2.3.

2. Methods

2.1. Characteristic procedures in HRS

The construction of experimental holograms is described in

detail in our previous study [9]. In the two-dimensional

representation of a multi-dimensional experimental space the

discrete concentration levels of components are represented by

lines. The level of each component increases gradually till it

reaches its maximum then it decreases gradually again. This

mode of representation leads to wavelike arrangement of levels
(see Figs. 1–3). It is very important to emphasize that the levels

of components are arranged in such a way that each component

has different periodicity. Accordingly, moving along any axis

from one experimental point to the next one only one level of

one variable is changed.

The initial catalyst library has been created using elements

of symmetry of experimental spaces according to our previous

routine [9–11]. The initial experimental points have been fixed

as small clusters: (i) in the center, (ii) along the symmetry axes

and (iii) in the corners of experimental spaces resulting in 48

different catalyst compositions. The forthcoming generations

have been created by a rectangular-shaped experimental region

4 � 4 in size around the best three hits of the preceding

generations [9–11]. Prior to the formation of the experimental

regions a variable position change has to be done according to

our previous routines [9–11]. This step is considered as the

main driving force in HRS [9]. As a result of variable position

changes the arrangement of compositions in the experimental

hologram is altered, eventually after variable position changes

each hit has a new neighborhood.

In this work catalyst libraries are virtually designed and

tested for three reactions, such as methane oxidation, propane

oxidation and methane oxidative coupling. The corresponding

objective functions are the conversion for methane and

propane, and the yield of C2 hydrocarbons, respectively.

Artificial Neural Networks have been used for virtual catalytic

tests. ANNs provide the quantitative relationship between

composition and catalytic performance. ANNs describing the

objective functions in the above experimental spaces were

previously trained with data represented in Refs. [10,2,5],

respectively, as discussed in detail in Section 2.3. The

concentration levels of different components in the three

above mentioned catalyst libraries are given in Tables 1–3.

2.2. Characteristic procedures in Genetic Algorithm

Genetic Algorithm is a stochastic approach for catalyst

library optimization. The initial catalyst library is created by a

random procedure, which is followed by an iterative process

during which the catalysts of the next generation are

determined by using catalytic results of the previous one.

In this report the method described in studies of Baerns et al.

[1] was used with small modification adapted to the discrete

concentration levels applied in our approach. Correspondingly,

the following operators have been involved in the process

leading for the creation of the forthcoming generations:
� c
rossover,
� q
ualitative mutation, and
� q
uantitative mutation.

The probabilities of these operators are determined by the

following formulas as described by Baerns et al. [1]:

Wcross ¼ A
Pbest � BPmean

Pbest

(1)
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Wquant ¼ A
BPmean

Pbest

(2)

Wmut ¼ 1�Wcross �Wquant (3)

where the so called control parameters A and B are equal to 0.5
in this study. Similar values were used in earlier studies [1].

Pmean and Pbest are the mean and the best value of catalytic

performance.

The action of different operators mentioned above is

discussed in detail in Ref. [1]. Correspondingly, during a

crossover one randomly selected component of two different

catalytic materials is exchanged, while during qualitative

mutation yes/no inversion of one randomly selected component

of a catalyst has been performed. However, as far as in our

approach the concentration of the components have only

discrete levels, the process of quantitative mutation has been

altered in comparison to that described in Ref. [1]. As a

consequence, the concentration level of component i, Li in a

quantitative mutation is controlled by a random integer number,

t (0; 1):

Lnew
i ¼ Lpreceding

i þ ð�1Þt (4)

This is an adaptation of GA using discrete levels for compo-

nents. In order to analyze the effect of the above modification

on the rate and certainty of optimum search it seems to be

inevitable to implement also the original version of Genetic

Algorithm using continuos domain for component loadings [1].

In the latter case the new concentration of a component,

that come through quantitative mutation can be calculated as

follows:

xnew
i ¼ xpreceding

i þ ð�1Þt xpreceding
i

2
(5)

where xi represents concentration value of the selected com-

ponent. Using this version of GA the compositions are not

forced to stay within the experimental spaces defined by sets of

levels given in Tables 1–3. The effect of the higher ‘‘freedom’’,

resulted from the use of continuos domain, on the certainty of

the convergence to the optimum in comparison to GA using

discrete levels will be discussed in Section 3.

Artificial Neural Networks (ANNs) have been used to obtain

the composition–performance (conversion or yield) relation-

ship and in such a way ANNs have been applied to perform

virtual catalytic experiments using GA. Upon using GA, both

applying continuos domain and discrete levels, 50 optimiza-

tions have been performed in each experimental space. For the

analysis of the performance of GA the best optimization

resulted in the fastest convergence to best attainable catalytic

performance was selected. In each optimization the population

size of one catalyst generation was 30 and 15 consecutive

generations have been created. The best five hits in the

preceding generation become automatically members of the

next one. In the process of creation of the new generation the

remaining 25 catalysts have been determined one by one

according to the following procedure:
1. F
irst a decision was made which operator to use in the

creation of a new catalyst. This decision was based on the

probabilities calculated by Eqs. (1)–(3).
2. C
atalyst or catalysts considered as a parent/parents are

selected from the whole preceding generation. In this process

each member of the preceding generation, i.e. 30 catalysts,

take part:
� fi
tness-proportional selection for quantitative mutation,
� r
andom selection for qualitative mutation, and
� c
rossover between one catalytic material selected in a fitness-

proportional manner and the other catalytic material chosen

randomly.

2.3. Artificial Neural Networks

ANNs are usually created for the evaluation of the objective

functions describing quantitatively the activity–composition

relationships in a given multi-dimensional experimental space.

The formation of ANNs requires previously measured

experimental data. Accordingly, in the present study results

obtained in earlier studies in the optimization of three different

catalysts libraries [2,5,10] were used. It has to be emphasized

that in the above three studies different optimization algorithms

have been used.

For methane oxidation 167 different catalyst compositions

optimized by HRS [10] have been explored. In low temperature

oxidation of propane 150 different catalyst compositions

obtained in three generations using GA [2] were examined. In

oxidative coupling of methane 76 catalysts optimized by

applying a hybrid algorithm based on alternating use of GA and

ANNs [5] were investigated.

For proper formation of ANNs and for assessment of their

predictive ability the available data of each catalyst library

have been divided into three well-distinguishable sets: (i)

training, (ii) validation and (iii) testing. It has to be emphasized

that in each set all sorts of catalysts from poor to good catalytic

activity are involved with the same rate. In each experimental

space investigated in this study the ratio of training,

validation and testing sets was set to approximately 70:

15:15, respectively.

The process of training and validation has been described in

detail elsewhere [7]. The networks are trained with resilient

back-propagation algorithm [7]. Training is stopped if the

validation error increases for more then two consecutive

epochs, an epoch is defined as a pass through the entire set of

training and validation patterns. This protocol is invoked to

prevent over-memorization during the training phase [7].

Nineteen different network architectures proposed by

Cundari et al. [7] were investigated to achieve acceptable

model accuracy. Every neural network architecture has been

trained 1000 times (each training has been initialized with

different, random node-to-node weights) [7]. According to the

average mean square errors (MSE) (for both training and

validation patterns) the resulted 19,000 networks were ranked.

The best 100 networks, i.e. networks with the smallest MSEs

have been involved into optimal linear combination [12],
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Table 1

Concentration levels of the components in methane oxidation

Levels Concentration of components

Molar ratio to Ce w/w% to support

Co Zr Cr La Pt Pd Au

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.5 0.5 0.1 0.1 0.1 0.1 0.1

3 1.0 1.0 0.2 0.2 0.2 0.2 0.2

4 2.0 2.0 0.4 0.4 1.5 1.5 1.0

5 1.9 3.0 1.5

Table 2

Concentration levels of the components in propane oxidation

Levels Concentration of components (w/w% to support)

Pt Pd Rh Ru Au Cu Ag Mn

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2

2 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.4

3 0.2 0.2 0.2 2.0 0.2 0.2 0.2 0.6

4 0.3 0.3 0.3 3.0 0.3 0.3 0.3 0.8

Table 3

Concentration levels of the components in methane oxidative coupling

Levels Concentration of components (mmol/g SiO2)

Na S W P Zr Mn

1 0.00 0.00 0.00 0.00 0.00 0.00

2 1.50 0.40 0.08 0.25 0.70 0.13

3 3.00 0.80 0.16 0.50 1.40 0.26

4 4.50 1.20 0.24 0.75 2.10 0.39

5 6.00 1.60 0.32 1.00 2.80 0.52

6 7.50 2.00 0.40 1.25 3.50 0.65
during which so called OLC-network has been created.

Eventually, in the three catalyst libraries the resulting three

OLC-networks have been applied in this study for virtual

catalytic tests in combination either with HRS or with GA in

order to assess differences between the peculiarities of these

two optimization strategies.

It has to be mentioned that in case of methane oxidative

coupling only 76 data were available. Therefore optimal linear

combination cannot be initiated from the best 100 networks, as

the number of component networks cannot exceed the number

of data. In this case only the best 50 networks have been

characterized and used.

3. Results and discussion

3.1. Characterization of trained ANNs

The best 100 networks formed in three different experi-

mental spaces are characterized in Table 4. It is remarkable that

the first four-seven network architectures having the less

number of connection weights seldom appeared among the best

100 nets. Furthermore, the structure itself seems to play a

decisive role in the determination of model accuracy of a

network. In all of the three investigated case studies among the

best 100 nets, the occurrence of networks with at least two

hidden layers in the architecture is significantly larger than that

of the networks containing only one hidden layer.

In order to get the OLC-network linear combination of the

best 100 networks formed in the training phase have been made.

As emerges from Tables 5–7, upon using the OLC-network the

mean square error on the test set is lower than that obtained by

using any of the component networks. This finding indicates on

a fairly good correlation between measured and predicted

catalytic results and it supports the use of OLC-approach, since

OLC-networks in all of these cases have superior performance

to any component networks. The results show also that in the

best 100 networks involved in the linear combination only 9, 6

and 4 networks have combination weights different from zero

in the three investigated case studies, respectively.

3.2. Comparison of HRS and GA

As described in Section 2 50 optimum searches with GA,

using both discrete levels and continuos domains for

concentration of components, have been initiated in each

experimental space. The result of the best runs, i.e. which

provided the fastest search for the best catalytic performance,

are shown and compared with results of holographic

optimization. These results are given in Tables 8–10. As

emerges from these data, HRS performs better than any kind

of GA when the rate of optimum search is compared. In each

case less number of generations and less number of catalysts

were needed to find the global optimum. It has to be mentioned

that the global optima found are valid only for the sets of

discrete levels predefined in Tables 1–3. Further improvement

in the catalytic activity can only be attained by establishing new

concentration levels for the components around the present
optimum. It allows refining the resolution as well, i.e. reducing

the increments between the discrete values of levels as it was

applied in our pervious studies [9,10]. Similar approach is also

accepted in the classical factorial DOE method.

In case of GA exceedingly large diversity of materials is

required in the process of optimization, which is due to the

stochastic nature of this optimization algorithm. It can be

mentioned that moderate level of compositional diversity is

inevitable even in HRS. The large diversity of materials in GA

necessarily leads to testing numerous catalytically poor

materials. Probably, this fact is responsible for the relatively

slow rate of approximation of the optimum when GA is used.

The easiest way to compare the diversity of compositions in

optimized catalyst libraries is the visualization of experimental

data, i.e. the representation of catalytic results as a function of

composition in comprehensible figures. In our previous studies

it has already been shown that beyond its excellent optimization

feature HRS has also strong visualization ability [9,10]. This

ability of HRS was also applied in this study. Upon using the

ANNs, which provide the composition–activity relationship,

the whole experimental space can be visualized by a two-

dimensional hologram [10]. It should be emphasized that ANNs

can be developed for any catalyst libraries regardless the

optimization algorithm used provided that the number of
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Table 5

Predictive ability of the OLC-network obtained in methane optimization

Component networks OLC-net

1st 2nd 5th 13th 25th 34th 40th 46th 49th

Structurea 1st hidden layer 20 20 14 45 20 20 10 20 15

2nd hidden layer 10 10 10 20 15 10 10

3rd hidden layer 10 10

MSE � 103 Training + validationb 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.1 1.1 0.4

Testb 22.2 16.1 14.5 17.9 11.7 20.9 12.3 13.7 11.8 9.1

Combination weights 0.14 0.29 0.09 0.06 0.14 0.07 0.04 0.07 0.09

a Structure shows the number of nodes (neurons) in the hidden layers.
b One hundred and forty-four catalysts have been involved in training and validation patterns, whereas the test set consists of 24 catalysts. In each pattern all sorts of

catalysts from poor to good catalytic activity are involved with the same rate.

Table 6

Predictive ability of the OLC-network obtained in propane oxidation

Component networks OLC-network

1st 5th 12th 17th 21st 37th

Structurea 1st hidden layer 10 15 14 10 10 20

2nd hidden layer 15 10 15 15 10

3rd hidden layer 10

MSE � 103 Training + validationb 1.1 1.6 1.7 1.8 1.9 1.9 0.6

Testb 66.7 59.6 30.8 35.6 47.3 62.4 30.0

Combination weights 0.28 0.08 0.29 0.16 0.09 0.11

a Structure shows the number of nodes (neurons) in the hidden layers.
b One hundred and twenty-nine catalysts have been involved in training and validation patterns, whereas the test set consists of 21 catalysts. In each pattern all sorts

of catalysts from poor to good catalytic activity are involved with the same rate.

Table 4

Characterization of the best 100 networks obtained in the three case studies

Structure of ANNsa Occurrence of a structure amongst the best 100 networks

1st hidden layer 2nd hidden layer 3rd hidden layer Methane oxidation Propane oxidation Methane oxidative couplingb

5 0 0 0

5 3 2 0 0 0

5 5 0 0 0

10 0 0 0

15 0 2 0

20 1 1 0

25 2 0 0

10 15 5 14 0

14 10 8 8 5

15 10 5 14 6

30 2 3 0

35 6 2 1

15 15 13 8 7

20 10 15 17 7

40 3 1 1

45 5 0 0

20 10 10 17 20 17

50 3 1 0

20 20 15 9 6

a Structure of ANNs shows the number of nodes (neurons) in the hidden layers.
b Only the best 50 networks are characterized.
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Table 8

Summary of optimization using HRS and GA in methane oxidation

OMa Gen.b Num.c Composition of the best catalysts ad

Molar ratio w/w% to support

Ce Co Zr Cr La Pt Pd Au

HRS 6 213 1.00 0.00 0.00 0.00 0.00 1.90 3.00 0.00 98.1

GA_de 13 390 1.00 0.00 0.00 0.00 0.00 1.90 3.00 0.00 98.1

GA_ce 13 390 0.96 0.00 0.00 0.00 0.04 1.85 2.97 0.0 98.0

Reaction temperature: 350 8C; catalyst loading: 100 mg; feed: 1% CH4, 10% O2 and 89% N2; flow rate: 10 ml/min. Conditions are cited from Ref. [10].
a Optimization method.
b Generations investigated.
c Accumulated number of virtual catalytic test.
d Conversion of methane.
e GA_d and GA_c represent GA using discrete levels and continuos domain, respectively.

Table 9

Summary of optimization using HRS and in propane oxidation

OMa Gen.b Num.c Composition of the best catalysts (w/w% to support) ad

Pt Pd Rh Ru Au Cu Ag Mn

HRS 4 163 0.00 0.30 0.00 2.00 0.00 0.00 0.00 0.80 94.8

GA_de 11 330 0.00 0.30 0.00 2.00 0.00 0.00 0.00 0.80 94.8

GA_ce 13 390 0.13 0.25 0.00 2.24 0.00 0.01 0.00 0.78 94.6

Reaction temperature: 150 8C; catalyst loading: 200 mg; feed: 0.1% propane, 20% O2, He balance; flow rate: 6 ml/min. Conditions are cited from Ref. [2].
a Optimization method.
b Generations investigated.
c Accumulated number of virtual catalytic test.
d Conversion of propane.
e GA_d and GA_c represent GA using discrete levels and continuos domain, respectively.

Table 10

Summary of optimization using HRS and GA in oxidative coupling of methane

OMa Gen.b Num.c Composition of the best catalysts (mmol/g SiO2) Yd

Na S W P Zr Mn

HRS 6 240 1.50 0.40 0.40 0.00 0.00 0.65 37.4

GA_de 12 360 1.50 0.40 0.40 0.00 0.00 0.65 37.4

GA_ce 14 420 1.87 0.32 0.39 0.00 0.00 0.59 35.9

Reaction temperature: 796 8C; catalyst loading: 300 mg; feed: 75% CH4, 25% O2; flow rate: 40 ml/min. Conditions are cited from Ref. [5].
a Optimization method.
b Generations investigated.
c Accumulated number of virtual catalytic test.
d Yield of C2 hydrocarbons.
e GA_d and GA_c represent GA using discrete levels and continuos domain, respectively.

Table 7

Predictive ability of the OLC-network obtained in methane oxidative coupling

Component networks OLC-network

7th 27th 28th 35th

Structurea 1st hidden layer 35 20 15 20

2nd hidden layer 10 10 10

3rd hidden layer 10

MSE � 103 Training + validationb 1.3 1.5 1.5 1.5 1.0

Testb 36.9 21.4 18.4 18.7 17.6

Combination weights 0.20 0.23 0.20 0.36

a Structure shows the number of nodes (neurons) in the hidden layers.
b Sixty-four catalysts have been involved in training and validation patterns, whereas the test set consists of 12 catalysts. In each pattern all sorts of catalysts from

poor to good catalytic activity are involved with the same rate.
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Fig. 1. The arrangement of virtual conversion data in the experimental holo-

grams after optimization with HRS and GA (A and B) in the experimental space

of methane oxidation.

Table 11

Comparison of GA using continuos domain to GA using discrete levels

Experimental

space

Average of optimal valuesa Interval of confidenceb

GA_continuos GA_discrete GA_continuos GA_discrete

Methane oxidation 96.0 96.4 �4.2 �2.7

Propane oxidation 92.3 93.7 �5.0 �3.2

OCM 31.0 32.2 �4.6 �3.9

a Average of optimal values in 50 virtual optimization.
b At 5% level of significance.
experimental points exceeds a critical number. Irrespectively of

the source of catalytic data used for training, the obtained

ANNs, similarly to previously mentioned example in Ref. [10],

can be used for the visualization of experimental spaces in a

two-dimensional hologram. In such a way, for example, results

of virtual catalytic tests obtained by different optimization

algorithms can also be visualized in experimental holograms.

In the present study based on the composition–activity

relationship established by ANNs the composition of catalytic

materials was optimized virtually, using both HRS and GA.

Virtual catalytic results as a function of composition have been

arranged in two-dimensional holograms. Accordingly, catalyst

libraries for methane oxidation, propane oxidation and methane

coupling obtained in ‘‘virtual catalyst library optimization’’

using HRS and GA on discrete concentration levels are shown

in Figs. 1–3.

In Figs. 1–3A and B the arrangements of virtually tested

compositions are shown for HRS and GA, respectively. It has to

be mentioned that in our previous studies the performance of

tested catalysts was substituted by different colors or shades in

the experimental holograms [9,10]. Contrary to that in this

study only the location of the tested compositions is given.

Consequently, only the arrangement of the tested experimental

points will be analyzed and discussed, since in the present case

the catalytic performance has no relevance. Therefore, all tested

compositions are highlighted uniformly as small black points.

Similarly to our previous results well-defined periodic

arrangements of data can be observed in catalyst libraries

obtained in HRS, whereas in case of GA ‘‘unstructured’’ large

diversity of the catalyst libraries is evidenced. As emerges from

Figs. 1–3 HRS avoids the points that are far away from the

optimum. Similar results were obtained in our earlier studies

[9–11]. In addition, the arrangements of tested catalysts reveal

qualitatively the composition–activity relationships.

For example, in methane oxidation (see Fig. 1A) the

preferential role of Pd is verified as along the Y-axis the periodic

appearance of experimental points follows the waves of Pd

levels. Additionally, catalysts perform better at low levels of Zr

and La as the majority of tested materials are located at the

smallest Zr and La levels.

Pronounced periodicity in low temperature oxidation of

propane can also be seen in Fig. 2A, where the ‘‘lines’’ along

the Y-axis represent the highest level of manganese. The

presence of Rh and Ag has a negative effect on the propane

conversion, as there are no experimental points at the highest

Rh and Ag levels.

In oxidative coupling of methane (see Fig. 3A) sulfur has a

negative effect on the C2 yield as there are no experimental

points in areas containing sulfur. In contrast to the effect of

sulfur the presence of Mn has an advantageous effect on C2

yield, as experimental points follows the highest Mn loading.

As emerges form Figs. 1B–3B in GA, contrary to HRS, the

compositions are arranged in stochastic manner in all case

studies. Consequently, the use of GA cannot provide any exact

conclusion about the activity–composition relationship in the

given experimental space. The large diversity of virtual

experimental points leads to the preparation and test of large
variety of catalytic materials. Apparently, our results show that

in GA numerous catalytically poorly active materials are

unnecessary tested resulting in slow rate in the way to find the

optimum catalyst composition.

It has to be mentioned that in the field of catalyst library

design and optimization GA has been used for more than 5

years to search for the composition of the best performing

catalysts using continuos domain for concentration of

components. However, in our study discrete levels have been

created for all components. In this respect it has to be

emphasized that after optimization by GA the holographic

method of visualization of the catalyst libraries requires the use

of discrete concentration levels. Moreover, in this study our

main goal was to apply equivalent conditions for both

optimization algorithms in order to compare both the rate

and certainty of optimum search. In addition, we should like to

demonstrate the advantage of the use of discrete concentration
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levels over the use of continuous domain. Therefore upon using

GA in each experimental space 50 optimizations have been

initiated using continuos domain and discrete levels. As

emerges from data given in Table 11 the average of the

optimum values obtained upon using discrete levels exceeds

that of obtained by using continuous domain. In this respect, it

has to be mentioned that taking into account the intervals of

confidence at 5% level of significance (see Table 11) the above

differences are not so significant. Nevertheless, in each

experimental space the intervals of confidence are smaller
Fig. 2. The arrangement of virtual conversion data in the experimental holo-

grams after optimization with HRS and GA (A and B) in the experimental space

of propane oxidation.
when discrete levels were used in GA. It means that in the given

case study the convergence to the optimum value is more

probable when discrete values are used than when continuous

domain is applied. We consider this new finding as a very

important information.

It has to be emphasized that in oxidative coupling of

methane (OCM) when the continuos domain has been applied

in GA none of the 50 optimizations has been able to

approximate the 37.4% C2 maximum yield, which has been

found by GA using discrete levels (see Table 10). It can be
Fig. 3. The arrangement of virtual conversion data in the experimental holo-

grams after optimization with HRS and GA (A and B) in the experimental space

of methane oxidative coupling.
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concluded that according to our expectation higher certainty of

optimum search can be observed when, instead of the use of

continuous domain, discrete concentration levels are applied

in GA.

Theoretically, the maximum on continuos domain should be

at least as high as using discrete levels. Since in case of OCM

the optimum yield value found by GA on the continuous

domain is lower than the value found on discrete domain (see

Table 10), it unambiguously indicates that the algorithm did not

converge to the global optimum on the continuous domain.

Hence, it either converged to a local one, or did not converge at

all within the available number of generations. A possible

remedy to the convergence problems of the GA could be done

by tuning its control parameters, in particular the heuristic

parameters A and B and the proportion of elitist individuals.

But, in real experimental optimization these parameters has to

be set before the optimization and cannot be tuned during the

optimization process. In GA we applied the parameters that

proved to be the best ones according to previous studies from

the related art [1,2]. Additionally, it can be mentioned that

the parameters of HRS were not tuned either. We applied the

previously used parameters and methods with respect to

the number and size of experimental regions and the way of

variable position changes [9–11].

4. Summary

Results obtained in this study support the excellent

optimization features of HRS. In all cases HRS resulted in

faster rate of optimization than GA. HRS decreased the number

of generations and/or the number of necessary catalytic tests to

obtain the optimum catalyst composition. The pronounced

difference in the diversity of compositions tested by HRS and

GA has been demonstrated using holographic visualization of

virtual catalyst libraries obtained. The analysis of virtual

holograms shows that the main drawback of GA with respect to

HRS is the unstructured arrangement of tested compositions in
the given experimental space represented by the virtual

hologram. Upon using HRS qualitative relationships between

compositions and activities can be recognized, whereas in

catalyst libraries obtained by GA the experimental points are

arranged more or less randomly. Therefore upon using GA no

conclusions can be drawn with respect to the activity–

composition relationship by visual analysis of the holograms,

what represent the given experimental space. In GA the large

compositional diversity of catalysts leads to testing of

numerous catalytically poor materials.
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