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Abstract 

In this study Artificial Neural Networks (ANNs) have been used to reveal quantitative 

relationship between catalytic composition and catalytic activity. This relationship has been 

predefined using a hypothetical experimental space described by a multidimensional 

polynomial. The predictive ability of ANNs has been investigated, i.e. an attempt was done to 

evaluate how ANNs can envisage a given hypothetical experimental space. Data sets for 

training, validation and testing of ANNs have been obtained from the hypothetical 

experimental space using two different ways of sampling. Data were selected (i) by means of 

our optimization algorithm called Holographic Research Strategy (HRS), and (ii) randomly. 

In order to model real experimentation, data were also generated with error. The relationship 

between the complexity of different network topologies and their predictive ability has been 

investigated. It has been shown that when data used for training have been perturbed with a 

given level of noise, less complex network architectures give acceptable accuracy. 

Additionally, estimated experimental spaces were visualized in a 2D layout by means of 

Holographic Mappings (HMs). Analysis of HMs revealed that ANNs trained by data sets 

obtained upon an optimization procedure provides better description of the experimental 
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space in the vicinity of the optimum than ANNs trained by randomly selected data sets. This 

fact indicates again the importance of the optimization in combinatorial catalyst library 

design.  

 

Keywords: multidimensional space, high-throughput methods, knowledge extraction, 

information mining, Artificial Neural Networks (ANNs), visualization, library 
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Introduction 

In high-throughput experimentation huge amount of data are created. In order to accelerate 

the process of optimization and discovery of new materials these data have to be analyzed by 

different information mining tools. The analysis of patterns between input and output 

variables is usually called information mining. Eventually, on the bases of data accumulated it 

has to be established how the input variables have to be selected in order to get higher system 

performance. Non linear dependence of objective functions (output variables) on the input 

variables, which is most common in many engineering disciplines, leads to complicated hyper 

surfaces that have to be optimized. However, it has to be emphasized that besides quantitative 

variables there are qualitative ones as well, such as for example the type of support, way of 

catalyst preparation, way of pretreatment etc. These variables create a set of hyper surfaces. 

The set contains n hyper surfaces with n equals the multiplication of all modalities of all 

qualitative variables.  

 Information mining is essential for rapid discovery of novel materials including 

heterogeneous catalysts. Fast and reliable convergence to the optimum is based on reliable 

approximation of the objective function with a model properly fitted to previously 

accumulated data. In our previous work it was shown that combined application of Artificial 

Neural Networks (ANNs) and Holographic Research Strategy (HRS) is highly efficient in 

information mining and knowledge extraction [1].  

Practically, ANNs can be considered as black boxes relating input data to output ones. 

The black box character is due to the complex structure of neural networks. These systems 

mimic the mechanism acting in biological neuron networks. In Multilayer Perceptrons 

(MLPs), which are the most widely used type of ANNs in high-throughput materials research, 

including heterogeneous catalysis [1-7], the input signals propagate from layer to layer 

containing different number of neurons (nodes) resulting in finally the output signals. ANNs 
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are excellent for non-linear regressions. Their pattern recognition and predictive ability make 

them especially beneficial in different optimization tasks, such as optimization of 

heterogeneous catalysts libraries [1-7]. Based on input variables, such as composition, 

preparation and testing conditions etc., the catalytic performance of a given material can be 

predicted. Fitting the parameters of ANNs, usually called training, requires previously 

accumulated data of the related catalytic reaction. The set of catalytic data used in ANN 

training forms the so-called training set. A validation set is employed also in order to avoid 

overtraining of ANNs.  

Because of their black box character, ANNs are not easy to be conceptualized. They 

cannot be used alone for optimization. They do not propose new samples to be tested 

according to an optimization criterion. Therefore, when optimization is performed ANNs are 

usually combined with different optimization algorithms such as Genetic Algorithm (GA) [4-

6]. In such combination the optimization algorithm generates virtual compositions that have to 

be tested by ANNs. In virtual catalytic experiments repeated application of virtual preparation 

and testing steps leads to virtual hits (promising catalysts). In this approach the performance 

of virtual hits has to be tested in real catalytic experiments as well.  

In the present study HRS [1] has been used as an optimization algorithm. It has been 

realized that besides the excellent optimization feature of HRS it has singular visualization 

ability, too. Holographic Mapping (HM) can represent multi-dimensional surfaces, i.e. both 

multi-dimensional functions and multi-dimensional experimental spaces, in a 2D layout [1,8]. 

The combination of HM with ANNs provides not only a virtual optimization system, but a 

visualization tool as well [1]. In this way relationships in multi-dimensional spaces can be 

revealed; complex hyper surfaces can be analyzed visually. Eventually, HRS transforms 

sophisticated mathematical structure of ANNs into a human-comprehensible representation. 

Practically, HM enlightens the black box character of the ANNs, consequently the 
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combination of HM with ANNs appears to be an excellent method for knowledge extraction 

[1].  

It has to be mentioned that beyond ANNs other machine learning techniques, such as 

for example Support Vector Machines (SVM) [9,10], are also well known. They are supposed 

to be superior to ANNs due to significantly less tendency to be overfitted. However, 

according to our opinion their generalization and predictive ability is not better than that of 

ANNs. The comparison of SVM to ANNs trained according to our approach and methods 

(vide infra) can be a subject of another study.  

In most of the case studies using combinatorial approaches in heterogeneous catalysis 

the catalytic performance (conversion of substrate, product selectivity or yield, overall activity 

of the catalysts) has been investigated as the function of catalysts composition [1-5]. 

Nevertheless, there were attempts to include other parameters, such as reaction temperature, 

type of precursor compounds and mode of preparation [6,7,11]. However, according to our 

opinion nominal variables (types of precursors used, preparation methods and pretreatment 

conditions applied, etc.) are advisable to be kept constant in the process of design of a given 

catalyst library. Any alteration leads to a new experimental space (a new hyper surface) that 

has to be optimized separately. There can be significant discontinuity at the interfaces 

between the different experimental spaces, which cannot reasonably be treated with any 

optimization algorithms. In this case study only the composition of the catalysts is altered.  

The assessment of the predictive ability of neural networks is a crucial step in making 

decision how they can be used in further optimization. The relationships provided by properly 

trained ANNs can be used for extrapolation, i.e. to predict catalytic performance over the 

domain of independent variables tested so far.  

In the process of evaluation of neural networks, predicted performance and real 

experimental data have to be compared. It is usually based on the analysis of a testing set that 
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contains experimental data that were not included either in the training set or the validation 

set. The comparison of measured values to the predicted ones can be done calculating the 

Mean Square Error (MSE) or representing the predicted-measured correlation in a line graph 

[1,2]. In case of small testing set cross validation or boostrap can also be used [9]. 

Nevertheless, it has to be emphasized that the test set always contains arbitrarily selected 

catalysts. For example, upon applying an effective optimization algorithm the bad performing 

catalysts are discarded and in this way bad experimental regions remain under-sampled. 

Consequently, the training and test sets contain catalyst compositions predominantly from the 

vicinity of the optimum. Therefore it is highly probable that this experimental region is 

described more accurately than experimental regions of poor catalysts. A good correlation 

between measured and predicted data is generally due to the fact that the data are taken from 

the same class of quality. However, this good correlation is misleading since the under-

sampled part of the experimental space was not investigated and therefore cannot be 

estimated adequately. 

In the present study in order to assess the predictive ability of trained neural networks, 

a hypothetical experimental space is applied involving multiple independent variables in a 

multidimensional polynomial adopted from our previous paper [8]. Consequently, in the 

benchmark the composition-activity relationship is known. The comparison of “measured” 

(calculated) and predicted values is not restricted to an arbitrarily selected set of catalysts as 

the whole experimental space is available. The experimental space containing the calculated 

data will be called as “original” experimental space while that one containing the values 

predicted by neural networks will be called as “estimated” experimental space.  

Holographic Mapping will be applied for the comparison of original and estimated 

experimental spaces. Benchmark analysis, i.e. the application of a multidimensional function 

that describes explicit relationship between the composition and the catalytic performance 
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makes possible to perform unambiguous evaluation of ANNs and thus the conclusions can be 

generalized and exploited later in real experimentation.  

It has to be mentioned, that the strength of ANNs has already been demonstrated in 

many fields. Therefore, in this study the focus will be laid on applicability of Holographic 

Mapping as a new tool to evaluate the prediction ability of neural networks using a predefined 

benchmark. It will be shown that the application of MSE does not allow evaluating directly 

the predictive ability of ANNs. Thus, local visual analysis is required, i.e. the square errors 

have to be visualized in Holographic Maps. In this paper the effects of three crucial 

parameters, such as (i) sampling method, (ii) ANNs architecture, and (iii) experimental error, 

on the predictive ability of ANNs are investigated.  

First of all, two different sampling methods are tested. Catalysts will be selected from 

the original experimental space (i) upon using an optimization process (HRS), and (ii) 

randomly. In the previous case the density of data around the optimum is significantly larger 

than in the latter one, which is expected to affect the predictive ability of ANNs trained with 

these two different data sets.  

The effect of the architecture of the ANNs will also be investigated on the predictive 

ability of neural networks. In case of MLPs, the effect of the number of both hidden layers 

and hidden neurons in different layers will be studied.  

Thirdly, it is known that real experimental data always contain error. In the training 

phase neural networks are capable to learn the noisy data sets as well, which is supposed to 

affect the predictive ability of ANNs. In order to model experimental error, data in the 

original experimental space are modified randomly in a ±5 % interval. Both noisy and noise-

free data sets are used in individual training sets.  

 

Methods 
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Hypothetical objective function  

In this study a hypothetical experimental space is applied modeling multi-component 

supported metal catalysts adopted from our previous paper [8]. The oxidation of CO over 

hypothetical Pt and Pd based multi-component catalysts has been chosen as a virtual reaction. 

The objective function according to formula (1) has been used to describe the yield of CO2 

(YCO2) as a function of metal content (given in wt %).  

YCO2
 = 4.5·Pt+0.5·Pd+0.5·Ru+0.5·Pt·Pd·(Pt+1)·(Pd+0.1)+ Pt·Sn·(Pt-0.8)·(Sn+0.8)+ 

Pt·Pd·Sn·(Pt+Pd)·(Sn+1)+ Ru·Sn·(Sn+1)·(Ru-0.1)-0.1·(Ge+In)·(Pt+Pd+Ru)  (1) 

 

Holographic Research Strategy  

HRS is an optimization algorithm, which additionally has unique visualization abilities, too 

[1,8]. Holographic Mapping provides integrated overview of multidimensional experimental 

spaces or multidimensional functions in a two-dimensional form. Holographic Mapping is 

described in detail in our previous study [8]. Variables are arranged along the perpendicular X 

and Y-axes. Lines with different length substitute the discrete levels of different variables (see 

e.g. Fig. (1)). It has to be emphasized that a given line represents one level of a variable and 

the length of a line is proportional to the number of data points displayed along the line. The 

visualization is based on wavelike arrangement of levels of independent variables along the X 

and Y-axes. The level of each component increases gradually till it reaches its maximum then 

it decreases gradually again (see Fig. (1)). Accordingly, moving along any axis from one 

experimental point to the next one only one level of one variable is changed. This 

arrangement results in a 2D matrix where the adjacent points are neighbors in the original 

multidimensional space as well.  

In the present paper both the original hypothetical experimental space and different 

experimental spaces estimated with different neural networks (see later) have been visualized 
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using the Holographic Mapping. Additionally, the values of square errors representing the 

difference between corresponding data points in the 2D matrix of the original and estimated 

experimental spaces have also been visualized. These maps will be called as square error 

maps.  

The eight catalyst components and their concentration levels are summarized in Table 

1. The total combination of all concentration levels leads to an experimental space containing 

81,920 simulated CO2 yield data. In HMs the first four variables are arranged along the X-axis 

while the second four variables along the Y-axis (see Fig. (1)).  

In order to fit the parameters of neural networks three sets of catalysts (training, 

validation and testing sets) have to be selected from the hypothetical experimental space. It 

has been done in two different ways: catalysts are selected (i) according to HRS optimization 

and (ii) randomly. In the former case optimization steps described in our previous studies 

have been applied [1,8].  

In HRS optimization the initial experimental points (first catalyst generation) have 

been fixed as small clusters (i) in the center, (ii) along the symmetry axes and (iii) in the 

corners of the HMs of experimental spaces resulting in 48 different catalyst compositions 

[1,8]. The forthcoming generations have been created by a rectangular-shaped experimental 

region 4x4 in size around the best three hits of the preceding generations. Prior to the 

formation of the experimental regions a variable position change has to be done according to 

our previous routines. This step is considered as the main driving force in HRS. As a result of 

variable position changes the arrangement of compositions in the experimental hologram is 

altered, eventually after variable position changes each hit has a new neighborhood [1,8].  
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Artificial neural networks 

The formation of ANNs requires previously measured experimental data. In the 

present study “yields” are calculated using formula 1. Four different data sets, each containing 

about 200 data, have been created according to the combination of two different sampling 

methods (HRS optimization and random) and two different experimental errors (0 % and 5 

%).  

For proper formation of ANNs and for the assessment of their predictive ability the 

yields have been divided into three well-distinguishable sets: (i) training, (ii) validation and 

(iii) testing. In this study the ratio of training, validation and testing sets was adjusted to 

approximately 70:15:15, respectively.  

The process of training and validation has been described in detail elsewhere [3]. The 

networks are trained with resilient back-propagation algorithm [3]. Training is stopped if the 

validation error increases for more than two consecutive epochs; an epoch is defined as a pass 

through the entire set of training and validation patterns. This protocol is invoked to prevent 

over-teaching during the training phase [3].  

Nineteen different kinds of network architecture (see Table 2) proposed by Cundari et 

al. [3] have been investigated to achieve acceptable model accuracy. Complexity of different 

networks used in this study is reflected in the number of adjustable connection weights, which 

is dependent on the number of hidden layers and number of hidden neurons in different 

layers. The first network is the simplest; it consists of only one hidden layer and only 5 hidden 

neurons in this layer, which results in a topology only with 51 connection weights. In Table 2 

the applied neural networks are ranked according to the increasing number of their connection 

weights.  

Usually, the selection of an appropriate architecture is problem dependent. The 

approach proposed by Cundari makes possible an automatic selection of topologies. Actually, 
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a so-called Optimal Linear Combination [12] of different networks is used instead of 

application of a single topology. The combination weights for different networks are 

computed using the ordinary least mean square error algorithm and the statistically 

insignificant (at a 0.05 level of significance) architectures have been discarded.  

Before linear combination, each kind of architecture has been trained 1000 times (each 

training has been initialized with different, random node-to-node weights) [3], which results 

in 1000 networks from each topology. According to the 19 different topologies applied, the 

whole set consists of 19000 networks. In order to investigate the predictive ability of different 

topologies, not the whole set was used but networks with different complexity have been 

selected from Table 2. For example, in case of the first two topologies, prior to linear 

combination, the initial set consists of 2000 networks only. This number was further reduced 

to the best 100 networks. They are considered as the best, since they have the smallest mean 

square errors (MSEs) calculated for both training and validation sets. Finally, the best 100 

networks have been involved into the Optimal Linear Combination [12] mentioned above, 

during which a so-called OLC-network has been created. The linear combination can also be 

considered as a final reducing step, upon which the statistically insignificant networks are 

removed.  

Similarly to the strategy described above three additional OLC-networks have been 

created using the first four, eight and nineteen network topologies, respectively. Eventually, 

the resulting four OLC-networks have been applied in this study in combination with HRS in 

order to get a map of estimated experimental spaces. OLC-networks are designated as ANN2, 

ANN4, ANN8 and ANN19 indicating the numbers of network architectures involved into the 

linear combinations.  

In the designation of networks the abbreviation “opt” means that the data set has been 

created upon using the optimization algorithm (HRS), while “rnd” refers to the random 
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selection of data. The last number in the designation of the OLC-network indicates the value 

of generated experimental error. For example, a network designated as ANN8_opt_5 refers to 

an OLC-network that was created using the first eight types of architecture trained with data 

set obtained after optimization with HRS and generated with 5 % experimental error.  

 

Results and Discussion 

Holographic Mapping of the original experimental space is given in Fig. (1). Data 

have been generated according to equation (1). As emerges from Fig. (1) the preferential role 

of Pt can be revealed. Dark points are concentrated at high Pt content. Moreover, a cross 

effect between tin and platinum can also be recognized as highly active compositions can only 

be observed when both Sn and Pt are present. Detailed analysis of the original experimental 

space has been given in our earlier study [8].  

 This experimental space has been estimated by means of ANNs. This was done by 

using four different data sets according to two different sampling methods (HRS optimization 

and random selection) and two different extents of generated experimental errors (0 % and 5 

%). Based on the above data sets neural networks have been trained and OLC-networks have 

been created. In Tables 3-6 different OLC-networks obtained upon using the first two, four, 

eight and nineteen network topologies, respectively are characterized. It is remarkable, that in 

spite of that the best 100 trained networks have been involved into the linear combinations 

only a few proved to have combination weights significantly different from zero. For 

example, in Table 3 the OLC-network ANN2_rnd_0 consist of only 3 component networks 

having 0.15, 0.56 and 0.30 combination weights, respectively. The rest 97 networks have been 

dropped out since their combination weights have been insignificant (at a 0.05 level of 

significance).  
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It has to be mentioned that Tables 3-6 contain two types of MSE values. MSEfull has 

been calculated considering all data in the full experimental space (data used for training and 

validation were excluded from these calculations). MSEtest, has been determined according to 

the conventional approach mentioned in the Introduction, i.e. using the test set only. In our 

particular case it was restricted only to 27-33 data. As emerges from Table 3-6, the two types 

of MSE are not fully correlated and in our further analysis we have attributed higher relevance 

to MSEfull, which might reflect the predictive ability of trained neural networks more reliable 

than the MSEtest. 

 

Effect of network architecture on the predictive ability of OLC-networks 

As merges from Tables 3-6 the complexity of neural networks involved in the linear 

combinations increase in the following order: of ANN2<ANN4<ANN8<ANN19. For 

example, in case of ANN19_rnd_0 a three-hidden-layered component network can also be 

found (see Table 6). It is worth emphasizing again that the training procedure resulted in 1000 

networks from each kind of architecture, i.e. in case of ANN19 altogether 19000 networks are 

created. Hence, originally the less complex networks with low number of hidden layers and 

hidden neurons were available as well. According to the first reduction step from these 

nineteen thousand networks the best 100 have been selected for linear combinations. The 

linear combination was applied as a second reduction step, which eventually resulted in the 6 

component networks for ANN19_rnd_0 as shown in Table 6. All these steps are responsible 

for the decreased number of networks with low number of hidden layers and connection 

weights, although originally the less complex networks were present as well. Apparently, the 

system described by formula (1) requires the formation of complex neural architectures.  

If the system really requires complex network architecture, the MSEs obtained with 

respect to the “original” experimental space are expected to decrease in the following order: 
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ANN2>ANN4>ANN8>ANN19. However, this assumption is only true when error free data 

set was used for the training (see Table 3-6 and Fig. (2)). In comparison of ANN2_opt_0 to 

ANN19_opt_0 the MSE decreases from 8.20 to 4.78, respectively. However, when the data 

set is generated with 5 % error the MSE decreased only in the first three OLC-networks 

(ANN2, ANN4 and ANN8) and it increased again when ANN19 was applied (see Fig. (2A)). 

The results show that the nonlinear character of the system is masked by the experimental 

noise and therefore a less complex network can give as good prediction as a more complex 

one.  

It can be mentioned that similar results were obtained when other hypothetical 

functions with multiple variables have been applied. Tens of different multidimensional 

functions have been tested, but detailed discussion of these results exceeds the frame of the 

present study. Nevertheless, the conclusion is always the same: noisy data sets, which are very 

frequently generated in real experimentation, require training of less complex networks.  

It has to be emphasized that the MSEfull between original and estimated data have been 

calculated considering all data in the benchmark, of course, with the exception of data used 

for training and validation. Intrinsically, this value shows only an average picture about the 

predictive ability of an OLC-network. Square error can significantly be changed in different 

regions of the experimental space (vide infra).  

Hereinafter the effect of experimental error (0 and 5 %) and the sampling method (via 

optimization and random selection) on the predictive ability will be analyzed using ANN8-

networks. 

 

Effect of sampling method and experimental error on the predictive ability of OLC-

networks 
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The conventionally used line graphs, which are plotted as predicted values vs. measured ones 

using data of test sets, are shown in Fig. (3)-(4) obtained in case of the four ANN8-networks. 

In Fig. (3) the applied OLC-networks have been created by data set obtained via optimization 

by means of HRS. The training set was generated both without and with 5 % error in case of 

ANN8_opt_0 and ANN8_opt_5, predictions of which are shown in Fig. (3A) and (3B), 

respectively. In case of random selection of data sets the corresponding line graphs are shown 

in Fig. (4). The MSEtest values calculated with respect to the test sets are listed in Table 5. 

It has to be mentioned that prior to training, data with different quality are distributed 

evenly in training, validation and test set so that in each set (training, validation and test) all 

sorts of catalysts from the poorest to the best available after different data selection methods, 

are used with the same rate. Therefore, the test sets applied in Fig. (3)-(4) reflect the data 

distribution in the other two sets (training and validation) as well. Fig. (4) clearly shows that 

the test sets do not contain higher yield than 30 %. It means that during the random selection 

of data the best CO2 yield obtained was not higher than 30 %. Neither the training set nor the 

validation set can contain higher yield data. In contrast to this in Fig. (3) a broader distribution 

of data can be seen, i.e. during the HRS optimization, data with higher CO2 yield were also 

found and thus were involved into the test set as well. As emerges from Fig. (1) the original 

experimental space mostly contain data below 24 % CO2 yield. Therefore, it is not a surprise 

that by random selection high yields could not be found.  

At the first sight, preferential role of random selection of data to selection by 

optimization seems to be evident. In Fig. (4), where ANN8_rnd networks were applied, 

excellent correlation between the predicted and measured values is achieved. The 

corresponding MSEtest values calculated with respect to the test set (see Table 5) were 0.10 

and 2.94 at ANN8_rnd_0 and ANN8_rnd_5, respectively. In contrast to this, Fig. (3) indicates 

significantly higher deviations upon using ANN8_opt networks. The MSEs are 5.71 and 
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16.00 at ANN8_opt_0 and ANN8_opt_5, respectively. Additionally, in case of ANN8_rnd 

networks MSEs obtained with respect to the full experimental space ( see Fig. (2B)) are 

significantly lower than those obtained in case of ANN8_opt ones (see Fig. (2A)). However, 

these observations can be misleading in the assessment of the predictive ability of OLC-

networks. In case of line graphs (see Fig. (3) and (4)) the comparison between the predicted 

and measured values are restricted to a very limited number of data, which are additionally far 

away from the optimum, while in case of MSEfull values (see Fig. (2)) the alteration of the 

square error throughout the experimental space cannot be taken into consideration. Therefore, 

holographic maps and the so-called square error maps have to be applied in order to get a 

clear picture about the predictive ability of different OLC-networks (These results are shown 

in  Figs. (5)-(8)).  

Experimental spaces estimated by ANN8_opt_0 and ANN8_rnd_0 (networks trained 

by data without noise) are given in Fig. (5A) and Fig. (7A), respectively. The corresponding 

square error maps are shown in Fig. (5B) and Fig. (7B), respectively. In comparison to the 

original experimental space (see Fig. (1)) it can clearly be seen that the structure of data was 

estimated in a somewhat better way when neural networks were trained with data selected 

randomly (ANN8_rnd_0). However, as emerges from square error maps (Fig. (5B) and Fig. 

(7B)) the ANN8_opt_0 provides a much better approximation of the original experimental 

space in the vicinity of the optimum than the ANN8_rnd_0. The upper right side of Fig. (5B) 

is homogeneously light gray indicating small square error when ANN8_opt_0 was used, 

whereas the same region in Fig. (7B) reveals dark spots referring to bad estimation of the 

experimental space when ANN8_rnd_0 was used. In contrast to this, ANN8_rnd_0 proved to 

be much efficient in prediction at low CO2 yield data than ANN8_opt_0. As the original 

experimental space mostly contains data below 24 % CO2 yield, the MSEfull values calculated 

in case ANN8_rnd_0 can be significantly lower than in case ANN8_opt_0. Nevertheless, 
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from point of view of an experimenter the better prediction around the optimum possesses 

much higher significance than in any other regions of the experimental space. It is the main 

message from the above results. 

Beyond the above-mentioned correlation between noisy data sets and selected 

architecture, the use of data with experimental error results in another obvious consequence. 

As emerges from Table 3-6 and Fig. (2) the MSEs are significantly smaller when data without 

noise are used for training. The accuracy of the data set applied in training determines 

fundamentally the accuracy of predictions. Generally, a model, parameters of which is fitted 

by using noisy data set, cannot predict data more accurately than the accuracy of applied 

noisy data set itself. In this case the mean square error is a result of superposition of both the 

experimental and the prediction errors. Nevertheless, as emerges from Fig. (6) and Fig. (8) the 

estimation of experimental spaces are acceptable even if noisy data sets were used for the 

training of neural networks. It can be added that in high-throughput experimentation, similarly 

to other experimental works, the appearance of error is unavoidable; therefore a model that 

can tolerate noisy data is highly desirable. According to our result ANNs provide appropriate 

model even if the training set is noisy.  

 

Summary 

In this study a multidimensional function that describes relationship between the composition 

and the catalytic performance has been applied in order to generate a hypothetical 

experimental space. Data selected from this space were used in training of ANNs. The 

predictive ability of ANNs has been investigated, i.e. we have tried to answer the question: 

how ANNs can estimate an exactly defined hypothetical experimental space. The application 

of MSEs in the evaluation of ANNs can be misleading because it is either restricted only to a 

selected test set or provides only an average value throughout the whole experimental space. 
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Contrary to this, the local visual analysis of square errors in holographic maps can reveal the 

predictive ability of different neural networks.  

It can be established that the presence of experimental noise in the training set 

influences significantly the complexity of requested neural architecture. ANN8-networks have 

consisted of mostly one-hidden-layered component networks only and the corresponding 

calculated MSEs have been comparable to those obtained when ANN19-networks with two-

hidden-layered component networks were applied (see Table 5 and 6). It could be concluded 

that the nonlinear character of the system is masked by the experimental noise and therefore a 

less complex network can give as good prediction as a more complex one. Additionally, 

analysis of the holographic maps leads to the conclusion that ANNs provide acceptable 

prediction even if they were trained with noisy data sets (see Fig. (6)). Therefore, application 

of ANNs in real experimentation is reasonable and useful.  

It was also shown that neural networks trained with data set obtained after holographic 

optimization provide better model accuracy around the optimum, than those trained with 

randomly selected samples. This fact has again a great importance in real experimentation, 

especially when the goal is to find optimal compositions. In this way, alternating application 

of real optimization and neural networks can lead to accelerated optimum search.  
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Figure captions 

 

Fig. (1). Holographic mapping of “measured” (calculated) CO2 yield data in the “original” 

experimental space. Color-codes of yield data are indicated in the figure. The sequence of 

variables with increasing frequency of compositional waves along the X- and Y-axes: Pt, Pb, 

Sn, In and Ga, Ge, Ru, Pd, respectively. 

 

Fig. (2). Mean square errors obtained upon using different OLC-networks trained by data set 

obtained either in an optimization process by means of HRS or randomly (A and B, 

respectively). Effect of OLC-networks is compared using data sets ♦ without error and 
 

 with 

5 % generated error. The MSE between the original and estimated data has been calculated 

considering all data in the benchmark with the exception of data of training and validation set. 

 

Fig. (3). Prediction ability of OLC-networks trained with the data sets obtained in 

optimization process by means of HRS (ANN8_opt) generated without error and with 5 % 

error (A and B).  

 

Fig. (4). Prediction ability of OLC-networks trained with the data sets selected randomly 

(ANN8_rnd) generated without error and with 5 % error (A and B).  

 

Fig. (5). Holographic mapping of predicted CO2 yield and square errors data (A and B) in the 

estimated experimental space by means of OLC-Network ANN8_opt_0. Data are presented in 

grayscale indicated in the figure. For designation of components see Fig. (1). 
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Fig. (6). Holographic mapping of predicted CO2 yield and square errors data (A and B) in the 

estimated experimental space by means of OLC-Network ANN8_opt_5. Data are presented in 

grayscale indicated in the figure. For designation of components see  Fig. (1). 

 

Fig. (7). Holographic mapping of predicted CO2 yield and square errors data (A and B) in the 

estimated experimental space by means of OLC-Network ANN8_rnd_0. Data are presented in 

grayscale indicated in the figure. For designation of components see Fig. (1). 

 

Fig. (8). Holographic mapping of predicted CO2 yield and square errors data (A and B) in the 

estimated experimental space by means of OLC-Network ANN8_rnd_5. Data are presented in 

grayscale indicated in the figure. For designation of components see Fig. (1). 
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Table 1. Concentration levels of the components of catalysts in the hypothetical experimental 

space 

Levels Components, in wt % 

 Pt Pb Sn In Ga Ge Ru Pd 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 0.6 0.3 0.6 0.4 0.3 0.4 0.2 0.5 

3 1.2 0.6 1.1 0.8 0.6 0.8 0.4 1.0 

4 1.7 0.8 1.5 1.1 0.8 1.1 0.5 1.4 

5 2.1 - - - - - - - 

 

Table 2. Architecture of neural networks applied in this study (adopted from ref [3]) 

N
o 

Number of hidden neurons in the hidden layers Connection 

weights 

 1
st
 hidden layer 2

nd
 hidden layer 3

rd
 hidden layer  

1 5   51 

2 5 3 2 74 

3 5 5  81 

4 10   101 

5 15   151 

6 20 1  201 

7 25 1  251 

8 10 15 1 271 

9 14 10 1 287 

10 15 10 1 306 

11 30 1  301 

12 35 1  351 

13 15 15 1 391 

14 20 10 1 401 

15 40 1  401 

16 45 1  451 

17 20 10 10 500 

18 50 1  501 

19 20 20 1 623 
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Table 3. OLC-networks obtained in the training of the first two types of neural architecture 

Designation of 

OLC-networks 

Number of neurons in the hidden 

layers of component networks 

Combination 

weights
1
 

MSEsfull
2
 MSEstest

3
 

 1
st
 2

nd
 3

rd
    

ANN2_opt_0 5   0.54 8.20 11.32 

 5   0.47   

ANN2_opt_5 5   0.58 26.75 15.52 

 5   0.42   

ANN2_rnd_0 5   0.15 4.27 2.60 

 5   0.56   

 5 3 2 0.30   

ANN2_rnd_5 5 3 2 0.36 4.46 1.08 

 5   0.39   

 5   0.26   
1 

Coefficients in the linear combination of component networks 
2
 The mean square error 

between the original and estimated data considering all data in the full experimental space 

with exception the data of training and validation set. 
3
 The mean square error between the 

original and estimated data considering data in the test set. 

 

Table 4. OLC-networks obtained in the training of the first four types of neural architecture 

Designation of 

OLC-networks 

Number of neurons in the hidden 

layers of component networks 

Combination 

weights
1
 

MSEsfull
2
 MSEstest

3
 

 1
st
 2

nd
 3

rd
    

ANN4_opt_0 10   0.31 8.98 14.61 

 10   0.44   

 10   0.25   

ANN4_opt_5 10   1.00 25.08 31.65 

ANN4_rnd_0 10   0.19 1.48 0.39 

 10   0.25   

 5   0.18   

 10   0.39   

ANN4_rnd_5 10   0.44 3.80 2.16 

 10   0.55   
1 

Coefficients in the linear combination of component networks 
2
 The mean square error 

between the original and estimated data considering all data in the full experimental space 

with exception the data of training and validation set. 
3
 The mean square error between the 

original and estimated data considering data in the test set. 
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Table 5. OLC-networks obtained in the training of the first eight types of neural architecture 

Designation of 

OLC-networks 

Number of neurons in the hidden 

layers of component networks 

Combination 

weights
1
 

MSEsfull
2
 MSEstest

3
 

 1
st
 2

nd
 3

rd
    

ANN8_opt_0 10   0.26 7.70 5.71 

 25   0.22   

 20   0.20   

 25   0.32   

ANN8_opt_5 25   1.00 8.16 16.00 

ANN8_rnd_0 10   0.12 1.04 0.10 

 25   0.22   

 15   0.18   

 10 15  0.16   

 25   0.14   

 25   0.19   

ANN8_rnd_5 15   0.34 4.24 2.94 

 10 15  0.46   

 5   0.20   
1 

Coefficients in the linear combination of component networks 
2
 The mean square error 

between the original and estimated data considering all data in the full experimental space 

with exception the data of training and validation set. 
3
 The mean square error between the 

original and estimated data considering data in the test set. 

 

Table 6. OLC-networks obtained in the training all the nineteen types of neural architecture 

Designation of 

OLC-networks 

Number of neurons in the hidden 

layers of component networks 

Combination 

weights
1
 

MSEsfull
2
 MSEstest

3
 

 1
st
 2

nd
 3

rd
    

ANN19_opt_0 45   0.23 4.78 20.43 

 50   0.27   

 15 15  0.25   

 45   0.26   

ANN19_opt_5 14 10  1.00 25.24 20.00 

ANN19_rnd_0 14 10  0.24 1.59 1.46 

 14 10  0.18   

 20 20  0.20   

 25   0.16   

 20 10  0.13   

 20 10 10 0.10   

ANN19_rnd_5 15 15  0.59 4.20, 3.06 

 15 15  0.41   
1 

Coefficients in the linear combination of component networks.
2
 The mean square error 

between the original and estimated data considering all data in the full experimental space 

with exception the data of training and validation set.
3
 The mean square error between the 

original and estimated data considering data in the test set. 
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Fig. (1).  
 

optimum 
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Fig. (2). 
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Fig. (3). 
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Fig. (4). 
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Fig. (5A). 

 
Fig. (5B). 
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Fig. (6A). 

 
Fig. (6B). 
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Fig. (7A). 

 
Fig. (7B). 
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Fig. (8A). 

 
Fig. (8B). 
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